13,564 research outputs found

    Unsupervised Body Part Regression via Spatially Self-ordering Convolutional Neural Networks

    Full text link
    Automatic body part recognition for CT slices can benefit various medical image applications. Recent deep learning methods demonstrate promising performance, with the requirement of large amounts of labeled images for training. The intrinsic structural or superior-inferior slice ordering information in CT volumes is not fully exploited. In this paper, we propose a convolutional neural network (CNN) based Unsupervised Body part Regression (UBR) algorithm to address this problem. A novel unsupervised learning method and two inter-sample CNN loss functions are presented. Distinct from previous work, UBR builds a coordinate system for the human body and outputs a continuous score for each axial slice, representing the normalized position of the body part in the slice. The training process of UBR resembles a self-organization process: slice scores are learned from inter-slice relationships. The training samples are unlabeled CT volumes that are abundant, thus no extra annotation effort is needed. UBR is simple, fast, and accurate. Quantitative and qualitative experiments validate its effectiveness. In addition, we show two applications of UBR in network initialization and anomaly detection.Comment: Oral presentation in ISBI1

    Deep Networks Based Energy Models for Object Recognition from Multimodality Images

    Get PDF
    Object recognition has been extensively investigated in computer vision area, since it is a fundamental and essential technique in many important applications, such as robotics, auto-driving, automated manufacturing, and security surveillance. According to the selection criteria, object recognition mechanisms can be broadly categorized into object proposal and classification, eye fixation prediction and saliency object detection. Object proposal tends to capture all potential objects from natural images, and then classify them into predefined groups for image description and interpretation. For a given natural image, human perception is normally attracted to the most visually important regions/objects. Therefore, eye fixation prediction attempts to localize some interesting points or small regions according to human visual system (HVS). Based on these interesting points and small regions, saliency object detection algorithms propagate the important extracted information to achieve a refined segmentation of the whole salient objects. In addition to natural images, object recognition also plays a critical role in clinical practice. The informative insights of anatomy and function of human body obtained from multimodality biomedical images such as magnetic resonance imaging (MRI), transrectal ultrasound (TRUS), computed tomography (CT) and positron emission tomography (PET) facilitate the precision medicine. Automated object recognition from biomedical images empowers the non-invasive diagnosis and treatments via automated tissue segmentation, tumor detection and cancer staging. The conventional recognition methods normally utilize handcrafted features (such as oriented gradients, curvature, Haar features, Haralick texture features, Laws energy features, etc.) depending on the image modalities and object characteristics. It is challenging to have a general model for object recognition. Superior to handcrafted features, deep neural networks (DNN) can extract self-adaptive features corresponding with specific task, hence can be employed for general object recognition models. These DNN-features are adjusted semantically and cognitively by over tens of millions parameters corresponding to the mechanism of human brain, therefore leads to more accurate and robust results. Motivated by it, in this thesis, we proposed DNN-based energy models to recognize object on multimodality images. For the aim of object recognition, the major contributions of this thesis can be summarized below: 1. We firstly proposed a new comprehensive autoencoder model to recognize the position and shape of prostate from magnetic resonance images. Different from the most autoencoder-based methods, we focused on positive samples to train the model in which the extracted features all come from prostate. After that, an image energy minimization scheme was applied to further improve the recognition accuracy. The proposed model was compared with three classic classifiers (i.e. support vector machine with radial basis function kernel, random forest, and naive Bayes), and demonstrated significant superiority for prostate recognition on magnetic resonance images. We further extended the proposed autoencoder model for saliency object detection on natural images, and the experimental validation proved the accurate and robust saliency object detection results of our model. 2. A general multi-contexts combined deep neural networks (MCDN) model was then proposed for object recognition from natural images and biomedical images. Under one uniform framework, our model was performed in multi-scale manner. Our model was applied for saliency object detection from natural images as well as prostate recognition from magnetic resonance images. Our experimental validation demonstrated that the proposed model was competitive to current state-of-the-art methods. 3. We designed a novel saliency image energy to finely segment salient objects on basis of our MCDN model. The region priors were taken into account in the energy function to avoid trivial errors. Our method outperformed state-of-the-art algorithms on five benchmarking datasets. In the experiments, we also demonstrated that our proposed saliency image energy can boost the results of other conventional saliency detection methods

    CdTe Quantum Dot Fluorescence Thermometry of Rolling Bearing

    Get PDF
    Temperature is one of the most important parameters affecting the service life and performance of a rolling element bearing component. In this paper, a nonintrusive method is developed to monitor the temperature variation of the inner raceway during bearing operation utilizing CdTe quantum dots as the temperature sensors. The CdTe quantum dots were synthesized and were used in constructing a sensor film by means of layer-by-layer electrostatic self-assembly method on an ultrathin glass slice. The peak wavelength shift of the fluorescence spectrum of the sensor film shows a linear and reversible relationship with temperature, and it is used to sense the temperature of the inner raceway. The resolution of the CdTe optothermal sensor is determined to be 0.14 nm/°C. The temperature measurement of rolling element bearing was conducted on a bearing test rig incorporated with an optical fiber fluorescence spectrum detecting system. To verify the accuracy of the temperature obtained by quantum dots sensor film, a thermocouple was used to test the temperature of the inner raceway right before and after the operation. Results show that the temperature obtained by the CdTe quantum dots film sensor is consistent with that by the thermocouple, with an error typically below 10% or smaller
    • …
    corecore